Mediodorsal thalamic afferents to layer III of the rat prefrontal cortex: synaptic relationships to subclasses of interneurons.
نویسندگان
چکیده
The mediodorsal nucleus of the thalamus (MD) represents the main subcortical structure that projects to the prefrontal cortex (PFC) and it regulates key aspects of the cognitive functions of this region. Within the PFC, GABA local circuit neurons shape the activity patterns and hence the "memory fields" of pyramidal cells. Although the connections between the MD and PFC are well established, the ultrastructural relationships between projecting fibers from the MD and different subclasses of GABA cells in the PFC are not known. In order to address this issue in the rat, we examined MD axons labeled by tract-tracing in combination with immunogold-silver to identify different calcium-binding proteins localized within separate populations of interneurons. Electron micrographic examination of PFC sections from these animals revealed that MD terminals made primarily asymmetric synapses onto dendritic spines and less commonly onto dendritic shafts. Most of the dendrites receiving MD synaptic input were immunoreactive for parvalbumin (ParV), whereas MD synapses onto dendrites labeled for calretinin or calbindin were less frequent. We also observed that some MD terminals were themselves immunoreactive for calcium-binding proteins, again more commonly for ParV. These results suggest that the MD exerts a dual influence on PFC pyramidal cells: direct inputs onto spines and an indirect influence mediated via synapses onto each subclass of interneurons. The apparent preferential input to ParV cells endows MD afferents with a strong indirect inhibitory influence on pyramidal neuron activity by virtue of ParV cell synapses onto soma, proximal dendrites, and axon initial segments.
منابع مشابه
Morphology and Synaptic Organization of Non-Dopaminergic Nigral Projections to the Medio Dorsal Thalamic Nucleus of the Rat, a Study by Anterograde Transport of PHA-L
Background: Mediodorsal (MD) thalamic nucleus, which is considered to take place between extra pyramidal and limbic feedback circuit, receives projective fibers from ventrolateral neurons of reticular part of substantia nigra (SNr). In order to better understand the influence and chemical reaction of these fibers upon MD nucleus, the morphology and synaptology of them were examined in the prese...
متن کاملThe prefrontal cortex: Projection area of the thalamic mediodorsal nucleus?
The historical bases of the definitions of the prefrontal cortex are reviewed (cytoarchitecture, electrical unexcitability, afferents from the mediodorsal thalamic nucleus). Evidence is presented that the widely accepted proposal of Rose and Woolsey (1948) to name all cortex prefrontal that is reached by afferents from the mediodorsal nucleus is questionable for three reasons: the diversity of ...
متن کاملPrimed-burst potentiation in adult rat visual cortex in vitro
The effectiveness of θ pattern primed-bursts (PBs) on development of primed-burst (PB) potentiation was investigated in layer II/III of the adult rat visual cortex in vitro. Experiments were carried out in the visual cortical slices. Population excitatory post-synaptic potentials (pEPSPs) were evoked in layer II/III by stimulation of either white mater or layer IV. To induce long-term potenti...
متن کاملبررسی آوران های هسته های پشتی و میانی رافه به هسته MD تالاموس در Rat با استفاده از ردیاب رتروگراد HRP
In order to understand the function of mammalians serotonin system, we have to know the anatomical structure, because physiological changes are influenced through the anatomical changes. A number of thalamic nuclei are associated with functions known to be influenced by serotonergic input in brainstem, among them mediodorsal thalamic nucleus has relationship with limbic system and prefrontal co...
متن کاملThe mediodorsal thalamus drives feedforward inhibition in the anterior cingulate cortex via parvalbumin interneurons.
Although the medial prefrontal cortex (mPFC) is classically defined by its reciprocal connections with the mediodorsal thalamic nucleus (MD), the nature of information transfer between MD and mPFC is poorly understood. In sensory thalamocortical pathways, thalamic recruitment of feedforward inhibition mediated by fast-spiking, putative parvalbumin-expressing (PV) interneurons is a key feature t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of comparative neurology
دوره 490 3 شماره
صفحات -
تاریخ انتشار 2005